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Abstract

We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics
(MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyper-
bolic–elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front
tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embed-
ded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an
MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical sim-
ulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the
comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory.
Simulations of the Muon Collider/Neutrino Factory target have also been discussed.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Computational magnetohydrodynamics, greatly inspired over the last decades by magnetic confinement
fusion and astrophysics problems, has achieved significant results. The major research effort has been in the
area of highly ionized plasmas. Numerical methods and computational software for MHD of weakly conduct-
ing materials such as liquid metals or weakly ionized plasmas have not been developed to such an extent despite
the need for fusion research and industrial technologies. Theoretical, computational, and experimental studies
of liquid metal MHD (see [18–20] and references therein) have been driven by potential applications of flowing
liquid metals or electrically conducting liquid salts as coolant in magnetic confinement fusion reactors as well as
some industrial problems. Weakly ionized plasmas have been studied with respect to their application to
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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tokamak refueling devices [24,28], laser ablation in magnetic fields [12], and other processes in laboratories and
in nature.

The existence of moving free material interfaces or complex geometries in many important MHD problems
creates major complications for numerical algorithms. The majority of numerical studies of free surface MHD
flows are based on semi-analytical treatment of simplified flow regimes. To the best of our knowledge, the only
fully numerical treatment of general free surface incompressible liquid flows is implemented in the HIMAG
code [20] using the level set algorithm for fluid interfaces, the electric potential formulation for electromagnetic
forces, and the incompressible fluid flow approximation. However, strong linear and nonlinear waves and
other compressible fluid phenomena such as cavitation are typical features of many practically important free
surface MHD regimes in both weakly ionized plasmas and liquid metals interacting with intense sources of
external energies. The ablation of solid hydrogen pellets in tokamaks (a proposed tokamak fueling technol-
ogy) [23,24], laser–plasma interaction, and the interaction of a liquid mercury jet with proton pulses in target
devices for future advanced accelerators [22] are among numerous examples of such MHD problems. For the
simulation of such processes, we propose in this paper a 3D numerical algorithm and describe its
implementation.

The algorithm solves the compressible equations for fluid flows in the low magnetic Reynolds number
approximation [18] for electromagnetic forces. Mathematically, the governing system of equations is a coupled
hyperbolic–elliptic system in geometrically complex and evolving domains. We use the method of front track-
ing [9] for the propagation of fluid interfaces. Our FronTier code is capable of tracking and resolving topo-
logical changes of large numbers of interfaces in two and three-dimensional spaces [10]. In the method of front
tracking, the interface is a Lagrangian mesh moving through a volume filling rectangular mesh according to
solutions of Riemann problems for interface points. High resolution solvers based on second order Godunov
methods are used to update hyperbolic states in the interior away from interfaces. The embedded boundary
method [15] is used for solving the elliptic problem in geometrically complex domains bounded by fluid inter-
faces. The explicit treatment of interfaces typical for the method of front tracking is especially advantageous
for multiphysics problems involving phase transitions. It allows not only to solve accurately the Riemann
problem for the phase boundary, but also to apply different mathematical approximations in the regions sep-
arated by interfaces to account for different material properties and, if necessary, eliminate fast time scales in
numerical simulations.

We validate the method by simulating the distortion of the liquid mercury jet entering a non-uniform mag-
netic field and comparing simulation results with analytical solutions in terms of expansion series [21]. The
problem is also significantly important for the Neutrino Factory/Muon Collider, a future advanced acceler-
ator [22]. The target has been proposed as a liquid mercury jet entering a 15 Tesla solenoid and interacting
with an intense proton pulse in the solenoid center. Results of this paper are relevant to the first process in
the target – the entrance of the mercury jet in the magnetic solenoid. Simulations of the mercury jet expansion,
cavitation, and surface instabilities due to the interaction with proton pulses have already been performed
using our MHD code in 2D axisymmetric approximation [25,26]. Full 3D studies are in progress and will
be reported in a forthcoming paper.

The paper is organized as follows. In Section 2, we introduce the system of governing equations and discuss
mathematical approximations. The numerical algorithm, its implementation in the FronTier code, and valida-
tion are described in Section 3. Applications of FronTier to the numerical simulation of a mercury jet entering
a non-uniform magnetic field and relevance to design of the Neutrino Factory/Muon Collider target are pre-
sented in Section 4. Finally, we conclude the paper with a summary of our results and perspectives for future
work.
2. Governing equations

The system of MHD equations [14] contains a hyperbolic system of the mass, momentum, and energy con-
servation equations for the fluid, and a parabolic equation for the evolution of the magnetic field:
oq
ot
¼ �r � ðquÞ; ð1Þ
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ðJ� BÞ; ð2Þ

q
o

ot
þ u � r

� �
e ¼ �Pr � uþ qu � gþ 1

r
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4pr
r� BÞ; ð4Þ

r � B ¼ 0; ð5Þ
P ¼ P ðq; eÞ: ð6Þ
Here u, q and e are the velocity, density, and the specific internal energy of the fluid, respectively, P is the pres-
sure, g is the gravitational acceleration, B is the magnetic field induction, J ¼ c

4pr�H is the current density
distribution, r is the fluid conductivity, and c is the speed of light. The magnetic field H and the magnetic
induction B are related by the magnetic permeability coefficient l:B = lH. In the system (1)–(4), we neglected
effects of the heat conduction and viscosity. Eq. (5) is the solenoidal property of the magnetic field, and (6) is
the equation of state (EOS). EOS models for compressible conducting media are briefly discussed in Section
3.1. We write electrodynamic equations in Gaussian units throughout the paper. But we compare our results
with other studies using more convenient units for some quantities, such as Tesla for the magnetic field and
m/s for the velocity.

If the magnetic Reynolds number,
ReM ¼ 4purL
c2

;

where L is the typical length scale, is small, and the eddy current induced magnetic field dB is small compared
to the external field B, the full system of MHD equations (1)–(5) can be simplified. Namely, the time evolution
of the magnetic field (4) can be neglected, and the current density distribution can be obtained from Ohm’s law
J ¼ r �ruþ 1

c
u� B

� �
; ð7Þ
where u is the electric field potential. Due to the charge neutrality, the potential u satisfies the following Pois-
son equation
r � ðrruÞ ¼ 1

c
r � rðu� BÞ: ð8Þ
For a numerical computation, such an approach effectively removes fast time scales associated with the mag-
netic field diffusion,
s ¼ 4plrL2

c2
:

Eq. (5) is automatically satisfied for an external magnetic field created by a realistic source. The low magnetic
Reynolds number approximation is applicable to moderately conductive media, such as liquid metals or salts,
and weakly ionized plasmas. Its application to the problem of the pellet fueling of tokamaks was justified in
[28].

The following boundary conditions must be satisfied at the interface C of a conducting fluid with a dielectric
medium:

(i) the normal component of the velocity field is continuous across the interface;
(ii) the pressure jump at the interface is defined by the surface tension T and main radii of curvature:
DP jC ¼ T
1

r1

þ 1

r2

� �
; ð9Þ
(iii) the normal component of the current density vanishes at the interface giving rise to the Neumann bound-
ary condition for the electric potential
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ou
on

����
C

¼ 1

c
ðu� BÞ � n; ð10Þ
where n is a normal vector at the fluid free surface C.

In this paper, we propose a numerical algorithm for the MHD system of equations in low ReM approxima-
tion 1, 2, 3, (7), (8) for free surface flows. A similar technique can be applied for the full system of MHD equa-
tions (1)–(5) for free surface flows.
3. Numerical algorithm and implementation

The governing system of Eqs. (1)–(3), (7), (8), a coupled hyperbolic–elliptic system in a geometrically
complex moving domain, is solved using operator splitting. The fluid interface is represented as an explicit
co-dimension one Lagrangian mesh moving through a volume filling Eulerian mesh. The propagation and
redistribution of the interface using the method of front tracking [3,9] is performed at the beginning of a time
step. Then interior states are updated by second order hyperbolic solvers such as the Monotonic Upstream-
centered Scheme for Conservation Laws (MUSCL) [30]. At the end of the time step, the elliptic system is
solved using a finite volume discretization with interface constraints (the embedded boundary method
[15]), and the interior states are updated by adding electromagnetic source terms. In the next two sections,
we describe numerical algorithms for the hyperbolic and elliptic subsystems and their implementation in
the FronTier code.

3.1. Hyperbolic problem and free surface propagation

Front tracking is an adaptive computational method in which a lower dimensional moving grid is fit to and
follows distinguished waves in a flow. Tracked waves explicitly include jumps in the flow state across the waves
and keep discontinuities sharp. A key feature is the avoidance of finite differencing across discontinuity fronts
and thus the elimination of interfacial numerical diffusion including mass and vorticity diffusion [3,9]. Front
tracking is implemented in FronTier [10,11], a multiphysics code which is capable of tracking and resolving
topological changes of geometrically complex interfaces in two and three space dimensions. Details of the
front tracking method and the structure of the FronTier code are described in the above mentioned papers.
In this section, we will describe only details of the algorithm specific to the MHD system.

For free surface MHD flows, we are interested in tracking only fluid interfaces which are contact discon-
tinuity hypersurfaces of the corresponding Riemann problem [6]. The interface propagation consists of normal
and tangential propagation of each interface point. Since the tangential propagation in the MHD case is essen-
tially equivalent to the algorithm described in [11], we will concentrate here only on the algorithm for the nor-
mal propagation of interface points.

In the operator splitting scheme, the system of equations (1)–(3) can be considered as a pure hydrodynamic
system in an external field given by the Lorentz force. Since this force depends on the material dynamics and
properties, the algorithm for the propagation of the interface in the normal direction is slightly different from
that for the gravity force [11]. The algorithm solves a generalized Riemann problem for the projection of the
flow equations onto the direction normal to the front at the point being propagated. The projection of the
system (1)–(3) into the normal direction n yields the following one dimensional system
oq
ot
þ oqvN

on
þ an0

r
qvN ¼ 0;

oqvN

ot
þ oðqv2

N þ P Þ
on

þ an0

r
qv2

N ¼ qgN þ
1

c
ðJ� BÞN ;

oqvT

ot
þ oqvN vT

on
þ an0

r
qvN vT ¼ 0;

oqE
ot
þ oðqEvN þ PvN Þ

on
þ an0

r
ðqEvN þ PvNÞ ¼ qgN vN :

ð11Þ
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Here n0 is the r component of the normal vector n, o/on = n Æ $ is the directional derivative in the direction n,
AN = A Æ n is the normal component of a vector field A and AT = A � ANn is the corresponding tangential
component. The parameter a is equal to 1 for a cylindrical coordinate system, 2 for a spherical coordinate
system, and 0 otherwise. The implementation of geometric source terms corresponding to the cylindrical
and spherical systems of coordinates is given in [11].

A 5-point stencil for the point propagation algorithm is schematically shown in Fig. 1. The algorithm has
three main steps: slope reconstruction to compute approximations to the flow gradients along the normal line,
prediction using the Riemann problem solution, and correction to account for the flow gradients on both sides
of the front and to include geometric and body terms. The reconstruction step is standard and used in many
shock capturing methods (see, for example, [11] and references therein). In the prediction step (see Fig. 2a), we
solve the Riemann problem with states s�0 and s+0 to calculate the interface velocity W0 at the beginning of
the time step. Using this velocity, we can estimate the position of the interface xI at the end of the time step.
The middle states of the solution of the Riemann problem also provide the interface states s�I and s+I at the
new interface position xI.
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Fig. 1. Schematic of a stencil for the normal point propagation algorithm.
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of middle states from the solution.
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The correction step starts with obtaining states connected by characteristics with the states at the pre-
dicted interface position. Namely, we trace back the incoming characteristics from the predicted new front
position using the velocity and sound speeds computed from the Riemann problem, and use the slope recon-
struction algorithm to approximate the states sf and sb at the feet of characteristics (Fig. 2b). The correction
to the final interface states can be obtained by integrating iteratively the characteristic form of the system
(11) along both characteristics coming to the interface. This procedure, as it was shown in [11], can be
replaced by the following sequences of Riemann problems. The Riemann problem with the input states sf

and s�0 is solved and the right wave state of the solution, sll, approximates the wave incoming on the contact
at time t0 + dt from the left. Correspondingly, the Riemann problem with the input states sb and s+0 is
solved and the left wave state of the solution, srr, approximates the wave incoming on the contact at time
t0 + dt from the right. The states sll and srr are then modified by the action of the Lorentz force which
was computed at the end of the previous time step. The resulting states sllm and srrm approximate the state
of the flow incoming on the interface at the end of the time step. In most practical calculations only one, the
left or right state has to be modified by the electromagnetic terms since the conducting fluid is usually only
on one side of the interface.

Finally, the Riemann problem with the input state sllm and srrm is solved to obtain approximations of the
left and right states at the front, sl and sr, and the front velocity V at the time t0 + dt. The procedure is illus-
trated in Fig. 2c. Assuming that the acceleration of the interface is constant during the time step, the inter-
face velocity during the time step is approximated as W = (W0 + V)/2. However if strong waves are not
present in the vicinity of the interface, we simplify the algorithm and approximate the final interface states
by solving the Riemann problem with the input states sfm and sbm obtained from states sf and sb by the action
of the Lorentz force, as shown in Fig. 2d. This reduces the computational time by eliminating two relatively
expensive Riemann problem solving steps for every interface point.

Two techniques for the redistribution of interfaces and resolving their topological changes, the grid free
and grid based tracking, have been developed [10]. In the first method, interface points are always indepen-
dent of the rectangular grid while in the second method, the interface points are formed by the intersection
of the interface with the rectangular grid lines. Since the first algorithm is more accurate and sufficiently
robust, especially in 2D, we use it for the interface propagation in the hyperbolic part of the MHD algo-
rithm. We always transform the interface to the grid based one at the beginning of the elliptic time step since
such an interface ideally suits the finite volume discretization technique for the Poisson equation described in
the next section. In many practical applications, it is sufficient to solve the elliptic problem once per several
hyperbolic time steps.

The final phase of the hyperbolic time step update consists of computing new states on the rectangular spa-
tial grid. Several different shock capturing methods have been implemented in FronTier. They include both
directionally split MUSCL [30] type schemes such as the Piecewise Linear, Piecewise Parabolic Method [4],
a second order MUSCL scheme developed by I. L. Chern, and an unsplit MUSCL scheme [5]. An exact
and several approximate Riemann solvers are available for use by these methods.

In general, the electrical conductivity changes the equation of state of a compressible medium. Suitable for
the FronTier hyperbolic solvers and complete in the sense of [17] EOS for weakly ionized plasmas was devel-
oped in [28]. The EOS deals with gases (plasmas) for which the dissociation and ionization fractions are given
by the corresponding Saha equations and therefore are functions of the state. This EOS has been implemented
in the FronTier code. The test problems presented in this paper deal with mercury in weakly compressible
regime. We assume that the number density of free electrons and the electrical conductivity are constant.
As it can be seen from formulas of the weakly ionized EOS model of [28], the functional form of the pressure
equation is not changed compared to the standard polytropic gas EOS model in the case of constant dissoci-
ation and ionization fractions, and the energy equation is changed only by a constant. Therefore a non-con-
ducting fluid or gas EOS model can be used in the case of constant conductivity. We use a stiffened polytropic
EOS for mercury that describes a single phase fluid with tension [6,17]. In the example of a heterogeneous
modeling of multiphase fluid (mercury with vapor bubbles), discussed briefly in Section 4, the stiffened poly-
tropic EOS is used for the liquid mercury, and the polytropic EOS is used for the vapor, which is assumed non-
conducting.
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3.2. Elliptic problem for irregular domains

The embedded boundary method is based on the finite volume discretization in grid blocks defined by the
rectangular Cartesian grid and the interface. The solution is treated as a regular block centered quantity, even
when these centers are outside of the domain. However the gradient of the potential and the right hand side
are located in geometrical centers (centroids) of partial grid blocks cut by the interface [15]. This treatment has
the advantages of dealing with geometrically complex domains and ensures second order accuracy of the
solution.

We will describe the method and implementation for the MHD elliptic problem, namely the Poisson Eq.
(8) with Neumann boundary condition (10) for both 2D and 3D. The regular grid block is a square in 2D
and a cube in 3D, and the component elements of each block are either 2D block edges or 3D surfaces. Using
the divergence theorem and integrating $u over the control volume, the differential operator can be discret-
ized as
ðLuÞi ¼
1

V i

X
j

Fj � njSj

 !
; ð12Þ
where L = $ Æ r$ and Vi is the control volume. Each block element has size Sj and unit normal nj, with flux Fj

crossing its geometric center. For full block elements (not cut by the boundary), Fj is obtained by the centered
difference while the flux across partial block elements is obtained using a linear interpolation (in 2D) or bilin-
ear interpolation (in 3D) between centered difference fluxes in adjacent blocks. As it was shown in [15,29], the
interpolation of fluxes through edges of partial cells is necessary for stability and second order accuracy. The
flux interpolation method is illustrated in Fig. 3. In 2D, the flux across the center g of the partial edge ef is
obtained using the linear interpolation between the fluxes Fj and Fj+1, which are the finite differences of values
in the centers of the corresponding regular grid blocks. In 3D, the flux across the centroid P of the surface
ABC, which is the partial front surface element of the grid block (i, j,k) (the computational domain is above
the interface), is obtained using the bilinear interpolation between fluxes across the points G, D, E and F,
which are centroids of the regular block surface elements. For instance, the normal flux through the point
G is (u(i + 1,j,k) � u(i,j,k))/hx. The flux at the domain boundary (interface) is given by the Neumann
condition.

In order to implement the embedded boundary method, the interface is reconstructed using its intersections
with grid lines. The following assumptions and simplifications are made:

1. The maximum number of intersection of each grid block edge with the boundary curve or surface is one.
2. The elliptic problem domain within each grid block forms a connected set.
3. The positions of the boundary points are adjusted to remove partial blocks with volumes less than a certain

preset value.

The first and second assumptions are generally satisfied when the curvature of the interface is not too large
or the mesh is sufficiently refined. The third one is necessary since blocks of arbitrary small volumes introduce
large numerical errors and increase the condition number of the linear system resulting from the discretization
[15].

The summary of the algorithm implementation is as follows:

(1) The elliptic domain boundary is constructed using intersection points of the grid free interface with grid
lines. Using information from the reconstruction, types of material components of both grid points and
block centers are also properly set. All regular grid blocks are divided into three types: Internal, partial,
and external, which means completely within, partially within (cut by the interface), and completely out-
side of the computational domain for the elliptic problem.

(2) The number of blocks marked as partial or internal is counted, and the total size of the linear system is
set. A 2D or 3D matrix is set to record the global indices of the counted blocks, while the indices of the
external blocks are set to be negative. In parallel computing, two buffer layers of the index matrix are
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Fig. 3. Schematic of the linear and bilinear flux interpolation. (a) Linear flux interpolation in 2D and (b) bilinear flux interpolation in 3D.
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passed between neighboring processors for two purposes: to form a local to global index mapping and to
do a quadric interpolation of the potential gradient near the intersection of the subdomain boundary
with the interface.

(3) For each block marked as partial, all block elements are also divided into three types similar as above.
The edge centers and lengths are stored for 2D block elements, and surface centroids and areas are
stored in 3D. A 9-point stencil is set to calculate fluxes across the control volume BADEF, as shown
in Fig. 4, where the elliptic problem domain is the shaded region, and filled circles represent locations
where the potential is defined. According to the expression of flux Fj ¼

P
m;ncðm; nÞuðm; nÞ; ðm; n ¼

0; 1; 2Þ, we define a 3 · 3 matrix C with matrix elements c(m,n) representing the coefficient of u centered
at (m,n). Therefore u(1,1) is always the potential located within the control volume. Suppose a Cartesian
coordinate is constructed with basis vector ei(i = 0,1) and origin (0,0) as shown in Fig. 4, we further
denote c(m,n) as c(V), where the vector V has components m and n. The vector r is drawn from the reg-
ular block center containing the control volume to the center of the block element on which the flux is to
be integrated. Then e 0i = sign(r Æ ei)ei gives orientational information of r. Let e be the vector whose
entries are all ones, the stencil values for the linearly interpolated flux in d-direction are:



Fig. 4. Stencil setting for a partial grid block.
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cðeÞ ¼ a� 1

hd
; cðeþ e0dÞ ¼

1� a
hd

cðeþ e0d 0 Þ ¼
�a
hd

; cðeþ e0d þ e0d 0 Þ ¼
a
hd

where d 0,d = 0,1 and d 0 6¼d, hd is the grid spacing in the direction d, and a ¼ jr�bfed0 j
hd0

is the block element
aperture.In 3D, a 27-point stencil is used and the coefficients form a 3 · 3 · 3 matrix. Using the similar
notations as above, the bilinearly interpolated flux in the direction d has the stencil values:

cðeÞ ¼ �ð1� aÞð1� bÞ
hd

; cðeþ e0dÞ ¼
ð1� aÞð1� bÞ

hd

cðeþ e0d 0 Þ ¼
aðb� 1Þ

hd
; cðeþ e0d 00 Þ ¼

ða� 1Þb
hd

cðeþ e0d þ e0d 0 Þ ¼
að1� bÞ

hd
; cðeþ e0d þ e0d 00 Þ ¼

ð1� aÞb
hd

cðeþ e0d 0 þ e0d 00 Þ ¼
�ab
hd

; cðeþ e0d þ e0d 0 þ e0d 00 Þ ¼
ab
hd

;

where d,d 0,d00 = 0,1,2 and d 6¼ d 0 6¼ d 00 � a ¼ jr�ed0 j
hd0

; b ¼ jr�ed00 j
hd00

.P P

(4) Substituting Fj ¼ m;ncðm; nÞuðm; nÞ or m;n;lcðm; n; lÞuðm; n; lÞ into the Eq. (12) and summing up fluxes

through all elements of each PARTIAL block, the coefficient at each stencil point is set and added to the
global matrix. Since the right hand side in Eq. (10), which must be evaluated at the centroid of the partial
block, has the divergence form of a vector field ($ Æ (u · B)), the divergence theorem can also be applied
to replace the divergence with the finite volume integration of the flux of (u · B). This cancels the gra-
dient of potential and the flux of u · B in the normal direction to the boundary since they are equal by
the boundary condition. Note that from Eq. (8), both the stencil values and the right hand side is mul-
tiplied by the fluid conductivity r, which is evaluated at the center of block elements. There is no need to
calculate the size of the control volume since it appears as a denominator on both sides. Five or seven
point finite differences are used for the internal grid blocks.
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(5) The resulting linear system Ax = b is solved. We use preconditioners and iterative solvers implemented in
PETSc [1] and HYPRE [13] libraries. Then the gradient of the potential is calculated at all PARTIAL
and INTERNAL block centers, even if these centers are outside of the elliptic domain. Either the cen-
tered difference or quadric interpolation is used to maintain the second order accuracy. For example, the
x-derivative of the potential in the point (1,1), ux(1,1) (see Fig. 4), is easily calculated by the centered
differences of u(0,1) and u(2,1). However the quadric fitting is required to calculate ux in the point
(0,2) or (0,1): ux(0,1) is obtained as the x-derivative of the quadric curve, which interpolates potential
values u(0,1), u(1,1), and u(2,1). We also calculate the gradient of the potential at the interface points
as it is needed for the Riemann solver described in the previous section. If an interface point is located
inside a triangle between regular grid block centers for which the gradient of the potential is known (such
as the interface points A and B in Fig. 4), a triangular interpolation is used to calculate the gradient of
the potential in the interface point. If the interface point is outside of such a triangular (point G), a nor-
mal to the interface is constructed, and the gradient of the potential in the interface point is obtained
similarly to the quadric interpolation procedure described above.

(6) The interior momentum states are modified by adding the Lorentz force term. Notice that if the hyper-
bolic system is written in terms of conserved variables, namely the density, momentum, and total energy
density, the last variable remains unchanged. It is easy to verify that the external magnetic field does not
change the total energy of the system, and the increase of the internal energy due to Joule’s heat is can-
celed by the decrease of the kinetic energy due to the Lorentz force.

3.3. Validation of the elliptic technique

An extensive theoretical analysis of the method of front tracking for hyperbolic systems of conservations
laws has already been performed, and the method has been validated and tested on problems of Rayleigh–
Taylor and Richtmyer–Meshkov surface instabilities (see for example [7,8] for the comparison of theoretical,
numerical, and experimental data of Rayleigh–Taylor mixing rates). Since the described elliptic technique is
new to the method of front tracking and the FronTier software, we have validated it using analytical solutions
of a simple elliptic problem. Namely, we solve numerically the Neumann problem
Du ¼ f;

ou
on

����
C

¼ g;
assuming that the exact solution is u ¼ ek1x2þk2y2þk3z2
. f and g are obtained by differentiating the exact solution.

The problem is solved in the irregular 2D domain and a perturbed spherical 3D domain, both shown in Fig. 5.
We analyze the convergence of the gradient of the solution as the Neumann boundary problem contains an

arbitrary constant. $u also corresponds to physically measurable quantities in applications. The convergence
rate R is
a b

Fig. 5. Computational domains for the elliptic problem validation. (a) 2D domain and (b) 3D domain.
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R ¼ log
kenþ1k
kenk

� ��
log

hnþ1

hn

� �
;

where en+1 and en are error vectors corresponding to the grid spacing hn+1 and hn. The L2 norm is used in our
calculations. Tables 1–3 contain data on the solution error, convergence rate, CPU time, and the number of
iterations of the linear solver necessary to obtain the required tolerance. We observe that the solution gradient
is second order accurate. With the setting of a Dirichlet point and eliminating the solution constant associated
with the Neumann boundary, we find that the computed solution is also second order accurate. The distribu-
tion of the gradient error in the 2D problem is shown in Fig. 6. All 2D test calculations were performed on 4
processors using a 2 · 2 domain decomposition, and 3D tests used a 2 · 2 · 2 domain decomposition on 8
processors.

We would like to comment on the computational cost of the MHD algorithm. It is the sum of costs of three
major components:

(i) interface propagation and reconstruction algorithms;
(ii) solving the hyperbolic system in the interior domains;

(iii) solving the linear system of equations corresponding to the elliptic problem.

Since the interface is a co-dimension one hypersurface, the computational cost of (i) is usually much smaller
than the cost of other components. However this cost can be comparable with that of (ii) for very complex
interfaces. The cost of (ii) is O(N), where N is the total number of grid cells. For given N, the actual cost
depends on the hyperbolic scheme, Riemann solver, and the equation of state. The FronTier code has a mod-
ular structure which allows the user to choose solvers and algorithms from a list of available options. The cost
1
rgence and timing results for the x-derivative of the solution in 2D

size Error Convergence rate CPU time, s Iterations

1.110e�3 N/A 0.012 24
2.477e�4 2.164 0.025 51

28 5.332e�5 2.190 0.144 112
56 1.339e�5 2.124 1.321 283

is measured by L2 norm of ux, and the relative tolerance for the iterative linear solver is 10�5.

2
rgence and timing results of the gradient of the solution in 2D

size Error Convergence rate CPU time, s Iterations

9.094e�05 N/A 0.087 44
28 2.013e�05 2.175 0.389 98
56 4.798e�06 2.122 2.223 264
12 1.776e�06 1.893 15.445 500

is measured by L2 norm of $u, and the relative tolerance for the iterative linear solver is 10�5.

3
rgence results of the gradient of the solution in 3D

size Error Convergence rate Iterations

· 32 1.316e-03 N/A 42
· 64 3.179e-04 2.050 76

28 · 128 8.046e-05 2.016 144

is measured by L2 norm of $u, and the relative tolerance for the iterative linear solver is 10�5.



Fig. 6. Norm of the gradient error by the EB method on a 256 · 256 grid.
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of (iii) depends on the linear solver method the optimal choice of which may depend on the problem size.
While solving relatively small linear systems corresponding to 2D domains can be done with O(N2) direct solv-
ers, the optimal choice for a large 3D problem is a preconditioned iterative algorithm. The cost of the most
optimal ones, such as multigrid, approaches O(NlogN) [2]. We use parallel libraries of preconditioners and
iterative solvers implemented in THE PETSc [1] and HYPRE [13] packages. The elliptic problem becomes
dominant at some sufficiently fine grid which is 136 · 136 · 136 for the numerical example illustrated in
Fig. 7. To reduce the total computational cost, we often perform one elliptic step per several hyperbolic time
steps.

4. Application: mercury jet in a non-uniform magnetic field

In this section, we validate our MHD code through the comparison of the numerical simulation with exper-
iments and asymptotic solutions of a liquid mercury jet entering a non-uniform magnetic field. The simplicity
of the problem from a physics point of view and the presence of experimental data and satisfactory analytical
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Fig. 7. CPU time spent by the interface propagation algorithm (dot-dashed line), hyperbolic solver (solid line), and the elliptic solver
(dashed line). The elliptic problem starts to dominate at the grid size 136 · 136 · 136. Here the elliptic problem is solved for conducting
fluid occupying 34% of the computational domain. The hyperbolic solver is MUSCL with the exact Riemann solver and stiffened
polytropic (conducting liquid) and polytropic (non-conducting gas) EOS models. The elliptic solver is GMRES with the block Jacobi
preconditioning, as implemented in PETSc. The calculation was performed on a 2399 MHz Pentium cluster using 2 · 2 · 2 domain
decomposition.
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solutions in terms of expansion series [21] were key factors in choosing this problem for the benchmark.
Despite the fact that some features of this problem such as an incompressible and steady state flow regime
are not well suitable for the simulation with a compressible time dependent code, we were able to obtain a
good agreement with experiments and theory using a realistic equation of state for mercury. Our simulations
of complex compressible free surface flows in liquids and weakly ionized plasmas in fusion and accelerator
target applications often require an analysis of indirect and incomplete experimental data for validation,
and therefore are less suitable for the benchmark.

The setup of the problem is as follows. A free mercury jet with the diameter of 0.8 cm is oriented in the z-
direction. It moves along the z-axis, and enters a stationary transverse magnetic field that has only one non-
zero component, By, with the hyperbolic tangent spatial dependence
By

Bmax

� �2

¼ 1

2
1� tanh

z� z0

Lm

� �� �
;

where z0 is the center and Lm is the characteristic length of the magnetic field. In our simulations, z0 = 1.5 cm
and Lm = 0.62 cm. The distribution of the magnetic field is shown in Fig. 8.

In the theoretical analysis [21], the mercury jet going through the solenoid was approximated as a steady
state jet of infinite length. The experiments also dealt with long jets. However conventional methods such
as periodic or flow through boundary conditions are not applicable to the 3D direct numerical simulations
of such very long or infinite jets that exceed the size of the computational domain. A simple analysis shows
that the main contribution to the MHD force is provided by currents flowing in the longitudinal direction.
It is difficult to accurately approximate the Neumann boundary condition on the edges of a jet slice for the
Poisson problem (8), (10). Therefore a relatively short jet with edges completely within the computational
domain was simulated (see Fig. 9a). The jet length was chosen to be long enough compared to the jet diameter,
but sufficiently short to avoid a large 3D computational domain. The jet velocity was set to zero in the lab-
oratory frame, and the effect of the jet motion was achieved by moving the magnetic field in the computational
domain. We have observed the flattening of the jet as it moves through the nonuniform magnetic field (see
Fig. 9b and c), and compared the jet deformation with theoretical results of [21]. The theory itself has been
experimentally validated.

Past experiments have been performed [21] only in a narrow range of parameters (small absolute values and
ranges of the velocity and magnetic field). Here we present our studies of the jet deformation at large changes
of the velocity and magnetic field, and compare them with the theory. Studies using a wide range of param-
eters are also important for practical applications, as future experiments with mercury jets at the Neutrino
Factory/Muon Collider facility will operate with parameters significantly different than that in Oshima’s
experiments. As it was shown in [21], the theory is in a good agreement with experiments on the width of
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Fig. 8. Distribution of the applied magnetic field



Fig. 9. Change of the mercury jet shape as it enters the magnetic field. (a) Initial time, (b) t = 1.0 ms, (c) t = 1.5 ms.
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the flattened jet. Simulation results of the relative width change of the jet cross-section in magnetic fields
ranging from 5.5 T to 12 T and jet velocities of 50 m/s and 60 m/s are shown in Fig. 10. The jet width is in
a good agreement with theoretical predictions. As we see from Fig. 11, the jet width linearly depends on
B2/u at a fixed distance from the magnetic field center.

We have also observed a quasi-steady state of the jet shape in the sense that jet deformations remained
unchanged at some fixed longitudinal displacements with respect to the magnetic field at different times.
The quasi-steady state lasted until the longitudinal position of the jet cross-section approached the jet edge.

We have also performed the convergence study and found that the simulation error reduces with the mesh
refinement (see Table 4). We would like to note that since theoretical calculations were used to quantify the
error, some small error will remain at even higher level of the grid refinement due to the unknown error of the
theory. Experimental results are also not perfect as fluctuations of the jet velocity, pressure in the nozzle etc.
impose significant errors, and the solution can be approximated only in the sense of statistical average. Since
such detailed information on Oshima’s experiments is not available to us we have chosen to compare simula-
tions with the theory, and clearly observed the agreement and convergence with the mesh refinement.

The described problem is significantly important to the design of the Muon Collider/Neutrino Factory Tar-
get. The target is shown schematically in Fig. 12. It will contain a series of mercury jet pulses of about 0.5 cm
in radius and 60 cm in length. Each pulse will be shot at a velocity of 25–30 m/s into a 15 T magnetic field at a
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Fig. 10. Dependence of the relative change of the width of the jet cross-section on the longitudinal coordinate with respect to the magnetic
field center at different values of B2/u, [Tesla2 Æ s/m]. Solid line is the theoretical result and dots are measurements of simulated jet shapes.
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the magnetic field center. Solid line is the theoretical result and dots are measurements of simulated jet shapes.

Table 4
Convergence of simulations to theoretical results at B = 12 Tesla and u = 60 m/s

Mesh size Z = 1 cm Z = 2 cm

dR Relative error dR Relative error

24 · 15 · 78 0.1227 3.23e�1 0.2163 3.96e�1
48 · 30 · 156 0.1770 2.37e�2 0.3195 1.08e�1
72 · 45 · 234 0.1806 3.86e�3 0.3524 1.65e�2

Fig. 12. Schematic of the target for the Muon Collider/Neutrino Factory.
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small angle (0.033 rad) to the axis of the field. When the jet reaches the center of the magnet, it will interact
with a 3 ns proton pulse depositing about 100 J/g of energy in the mercury.

We have shown that in the first phase of the jet evolution, the entrance of the mercury jet into the solenoid,
the jet deformation may be significant at some design parameters, and that in turn may reduce the effective
cross-section of the jet interaction with the proton pulse. The result of the study was the optimization of
the jet entrance angle that does not lead to a large reduction of the interaction cross-section.

The state of the target after the interaction with a pulse of protons depositing a large amount of energy into
mercury is also of major importance to the accelerator design. Simulations of the mercury jet expansion, cav-
itation, and surface instabilities due to the interaction with proton pulses have already been performed using
our code in 2D axisymmetric approximation [25,26]. The previous work dealt with cavitation of mercury with-
out a magnetic field. We have performed recently the direct numerical simulation of cavitation in the mercury



Fig. 13. Direct 2D numerical simulation of cavitation in the mercury jet after the interaction with a proton pulse depositing 50 J/g (top
images) and 100 J/g (bottom images) of energy into the jet. Density distribution in the jet cross-section is shown: red is mercury, light blue
is the rarefied gas in cavitation bubbles, and dark blue is the ambient gas. Time frames correspond to 20 ls (left) and 40 ls (right). (a)
Emax = 50 J/g, t = 20 ls; (b) Emax = 50 J/g, t = 40 ls; (c) Emax = 100 J/g, t = 20 ls and (d) Emax = 100 J/g, t = 40 ls.
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jet in the presence of a magnetic field. Omitting physics modeling and details of the numerical algorithm for
the cavitation simulation presented in [27], we illustrate here only the geometric complexity of the problem.
Fig. 13 shows cross-sections of the cavitating jet, and interfaces between the mercury jet, ambient gas, and
cavitation bubbles. Our code is capable of propagating and resolving such complex interfaces, and solving
of the Poisson problem in the domain occupied by mercury. Full 3D studies of the mercury target using
the algorithm described in this paper are in progress and will be reported in a forthcoming paper.

5. Conclusions

We have developed a numerical algorithm and computational software for the numerical simulation of free
surface magnetohydrodynamic flows at low magnetic Reynolds numbers. The software is applicable to the
simulation of free surface MHD flows of conducting liquids and weakly ionized gases. The corresponding gov-
erning equations constitute a coupled hyperbolic–elliptic system in a geometrically complex and evolving
domain. The numerical algorithm includes the interface tracking technique for the hyperbolic problem, a Rie-
mann problem for the material interface, discretization of elliptic equations in irregular domains with interface
constraints using the embedded boundary method, and high performance parallel solvers such as MUSCL-
type solvers for hyperbolic problems and iterative solvers for linear systems implemented in the PETSc and
HYPRE packages.

We have validated the elliptic technique using an exact solution of a Poisson problem with a Neumann
boundary condition in geometrically complex domain and showed that it is second order accurate for the elec-
tric potential and its gradient. The MHD code has been validated by comparing numerical simulations with
analytical solutions in terms of expansion series for the problem a liquid mercury jet moving in a non-uniform
magnetic field. A good agreement of simulations with experimentally validated theoretical calculations has
been achieved. The study of a similar problem is important to the design of the future Muon Collider/Neutrino
Factory target, and has led to the optimization of the jet entrance angle into the magnetic solenoid. Numerical
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simulations of MHD processes in the mercury jet target interacting with a high intensity proton pulse in a
strong magnetic field have already been performed using the 2D axisymmetric version of our code. The full
3D simulations are in progress and will be presented in a forthcoming paper. Another current application
of the MHD algorithm is the simulation of flows of weakly ionized plasmas associated with the fueling of mag-
netically confined nuclear fusion devices by the injection of frozen deuterium-tritium pellets.
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